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Convection and flow in porous media. Part 1.
Visualization by magnetic resonance imaging
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We describe an experimental study of porous media convection (PMC) from onset
to 8Ra.. The goal of this work is to provide non-invasive imaging and high-precision
heat transport measurements to test theories of convection in PMC. We obtain
velocity information and visualize the convection patterns using magnetic resonance
imaging (MRI). We study both ordered and disordered packings of mono-disperse
spheres of diameter d = 3.204 4+ 0.029 mm, in circular, rectangular, and hexagonal
planforms. In general, the structure of the medium plays a role which is not predicted
by theories which assume a homogeneous system. Disordered media are prepared
by pouring mono-disperse spheres into the container. Large ordered regions of close
packing for the spheres, with grain boundaries and isolated defects, characterize these
media. The defects and grain boundaries play an important role in pattern formation
in disordered media. Any deviation from close packing produces a region of larger
porosity, hence locally larger permeability. The result is spatial variations in the
Rayleigh number, Ra. We define the critical Ra, Ra,, as the Rayleigh number at the
onset of convection in the ordered regions. We find that stable localized convective
regions exist around grain boundaries and defects at Ra < Ra,. These remain as
pinning sites for the convection patterns in the ordered regions as Ra increases above
Ra, up to 5Ra., the highest Ra studied in the disordered media. In ordered media,
spheres are packed such that the only deviations from close packing occur within a
thin (<d) region near the vertical walls. Stable localized convection begins at 0.5Ra. in
the wall regions but appears to play only a weak role in the pattern formation of the
interior regions (bulk), since different stable patterns are observed in the bulk at the
same Ra after each cycling of Ra below Ra,, even for similar patterns of small rolls
in the wall regions. The experiments provide a test of the following predictions for
PMC: (i) that straight parallel rolls should be linearly stable for Ra, < Ra < 5Ra,;
(ii) that at onset, the rolls should have a dimensionless wavevector g. = =; (iii) that at
the upper end of this range rolls should lose stability to cross-rolls; (iv) that the initial
slope of the Nusselt curve should be 2; (v) that there should be a rapid decay of
vertical vorticity — hence no complex flows, such as those which occur for Rayleigh—
Bénard convection (RBC) within the nominal regime of stable parallel rolls. These
predictions are in partial agreement with our findings for the bulk convection in the
ordered media. We observe roll-like structures which relax rapidly to stable patterns
between Ra, and 5Ra.. However we find a wavenumber which is 0.77 compared to
7 derived from linear stability theory. We find an asymmetry between the size of
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the upflowing regions and downflowing regions as Ra grows above Ra.. The ratio
of the volume of the upflowing to the volume of the downflowing regions decreases
as Ra increases and leads to a novel time-dependent state, which does not consist of
cross-rolls. This time-dependent state begins at 6Ra,. and is observed up to 8Ra,, the
largest Ra which we studied. It seems likely that the occurrence of this state is linked
to departures from the Boussinesq approximation at higher Ra. We also find that the
slope of the Nusselt curve is 0.7, which does not agree with the predicted value of 2.

1. Introduction

Buoyancy-driven porous media convection, PMC, and porous media flows in gen-
eral are of significant technical importance, with applications in insulation, ground-
water filtration, oil and gas recovery and many industrial processes. Combarnous &
Bories (1975) discusses these and other applications.

PMC is also interesting as a nonlinear pattern forming system. Such systems,
including the bulk fluid analogue to PMC, Rayleigh-Bénard convection (RBC) are of
increasing interest. Recent advances (Behringer 1985; Cross & Hohenberg 1993) in
understanding pattern formation in RBC are due in large part to its amenability to
theoretical analysis and to the ease of visualization with the shadowgraph technique
(Busse & Whitehead 1971; Rasenat et al. 1989; deBruyn et al. 1996).

The conventional equations of motion for PMC (Horton & Rodgers 1945, Lapwood
1948), are simpler than those of RBC but still predict a number of the same
features, including an initial instability with a non-zero wavenumber, nonlinear pattern
selection, and some common secondary instabilities. Conventional models of PMC
also differ from RBC in a number of ways. For instance, the momentum equation for
PMC is linear; in the complete theoretical description, the only nonlinearity comes
from the coupling of the velocity and temperature fields in the heat equation. In
PMC, the vertical vorticity decays away quickly, which provides an interesting test
of the importance of vertical vorticity to the complex dynamics observed for low to
moderate Prandtl number fluids in RBC (Morris et al. 1993; Xi, Gunton & Vinals
1993).

Our understanding of PMC has lagged that of RBC, especially in experiments.
This is due primarily to the fact that PMC is very difficult to visualize, since light is
typically dispersed or absorbed by the solid matrix in porous media. Until recently,
there have been no effective PMC visualization techniques which determine the
convection pattern non-invasively. The current lack of and need for visualization and
local velocity information has been pointed out in recent reviews by Torrance et al.
(1982) and by Georgiadis (1991). Much of the existing experimental data are limited
to heat transfer measurements (Schneider 1963; Katto & Masuoka 1967; Combarnous
1970; Buretta & Berman 1976; Kaneko, Mohtadi & Aziz 1974; Yen 1974), and these
data are often inconsistent with each other, a fact which the present studies, and
related work (Howle, Behringer & Georgiadis 1997) may explain. Specifically, the
convective pattern, which can significantly affect the heat transport, is sensitive to the
structure of the medium.

PMC visualization techniques in the past have been typically either invasive, or
limited to special geometries or to a few points. In general, there has been no
quantitative velocity information. For example, Elder (1967) visualized Hele-Shaw
convection to gain qualitative information about PMC based on the correspondence
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between Hele-Shaw equations and PMC equations. Prasad, Kulacki & Keyhani (1985)
used point measurement techniques by inserting thermocouples into a convection cell
to map the temperature. Bories & Thirriot (1969) observed PMC with a free upper
surface using aluminium particles sprinkled on a thin layer of fluid above the medium.
Beckermann, Viskanta & Ramadhyani (1988) studied a convective system with vertical
layers of porous media and clear fluid. They visualized the temperature patterns in
the bulk fluid and used that information to infer the pattern in the porous region.
Lister (1990) visualized convection by looking in from above through a thin Teflon
sheet with stainless steel mesh underneath. The mesh helped maintain isothermal
boundary conditions and served as the cathode in an electrolysis process involving
thirteen graphite slabs buried in the medium. Visualization was accomplished by
a pH indicator in the fluid which changed colour near the graphite and was then
carried to the top of the cell by the convection. However, the graphite plates
provided spatial perturbations, and the fluid was a mixture rather than a pure fluid.
Lein & Tankin (1992) used a technique based on the Christiansen filter concept to
visualize temperature profiles in two-dimensional PMC. This non-invasive technique
works well for this geometry, but it cannot be used to determine flow patterns in
general three-dimensional media. Recently, however, Howle, Behringer & Georgiadis
(1993a,b) used a modified shadowgraph technique to visualize PMC with special solid
matrices that have all surfaces either parallel or perpendicular to the incoming light
rays. While this technique is non-invasive, it does not work for an arbitrary medium
and does not provide velocity information.

To our knowledge, this work presents the first quantitative velocity profiles in PMC
obtained while maintaining close to ideal conditions for a packed bed of spheres. By
using magnetic resonance imaging (MRI) we measure the local density, velocity, and
temperature of a flowing fluid, such as water. In the following sections we discuss the
theory of PMC (§2), the apparatus and MRI technique used for these measurements
(§3), and the results for various planforms and packing arrangement (§4). We also
include results for pressure-driven flows (Georgiadis et al. 1991) which provide a test
of the MRI technique (Givler & Altobelli 1994; Kutsovsky et al. 1996; Lebon et
al. 1996) in another setting. Brief accounts of this work have appeared elsewhere
Shattuck et al. (1994, 1995).

2. Theory
2.1. Equations of motion for PMC

The equations of motion for porous media are based on an empirical relation between
the pressure applied across a uniform porous medium and the bulk flow rate through
the medium (Darcy 1856). This relation is expressed by Darcy’s law,

y 0P

=15 (2.1)

Ux

where v, is the fluid velocity averaged over the area perpendicular to the flow
direction, x, 5 is the fluid dynamic viscosity, P is the pressure; y is a geometrical
property of the porous medium called the permeability. Ergun (1952) determined an
empirical relation between 7, d, the pore size, and ¢, the porosity or void fraction for
spherical particles. Ergun’s relation,
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can also be derived from Carman-Kozeny’s hydraulic radius theory; in this case, the
constant is 180 instead of 150. Either of these gives a reasonable estimate of y. While
(2.1) is one-dimensional, the three-dimensional generalization (Nield & Bejan 1992;
Bear 1988) is

v=rn"ly-VP, (2.3)
where y is a second rank tensor. In the case of an isotropic media (2.3) reduces to
vp ="y, (2.4)
v

In this case, 7y is a scalar. Equation (2.4) has been investigated both experimentally and
theoretically for small v, such as those that occur in PMC (Dullien 1979; Whitaker
1986; Ene & PoliSevski 1987).

PMC, which was first described theoretically by Horton & Rodgers (1945) and
Lapwood (1948), consists of a fluid-saturated medium with uniform height, H, in the
z-direction. In the conventional scenario, the system is homogeneous and isotropic.
The temperature is specified on the isothermal horizontal boundaries, 7(z = —H/2) =
T, and T(z =+4+H/2) = T,. From T, and T,, we define a reference temperature
To = (Ty + T>)/2 and a temperature difference, AT = (7> — T1)/2. In the case of
convection, there is a buoyant force on the fluid which must be added to Darcy’s law
(2.4), and we also include an acceleration term (Nield & Bejan 1992), which gives

v ~
pod 7 = —VP — gv —psgz (2.5)
as the momentum equation, where g is the acceleration due to gravity, and a is a
medium-dependent acceleration coefficient. In (2.5), we have used the Oberbeck—
Boussinesq approximation (Oberbeck 1979; Boussinesq 1903), in which all fluid
parameters are assumed independent of 7" and P, except in the buoyancy term:

py = po(1 =T — Tp)).
Here, o is the coefficient of thermal expansion. The equation for mass conservation is
V=0 (2.6)

for an incompressible fluid saturating a uniform porous medium. The temperature
varies according to the heat equation,

oT
(pc)mE + (pCP)fv “VI'= kmv2 T, (2.7)

where ¢ is the specific heat, k is the thermal conductivity and the subscripts m and
f refer respectively to properties of the porous medium and fluid combined and to
properties of the fluid alone. We define the effective thermal diffusivity by
km

= . (2.8)

(pcp)s
The boundary conditions for v are no flux, which imply for the horizontal boundaries
that v,(z = £H/2) = 0; the boundary conditions on 7 are given above. In this model,
slip is allowed at the boundaries, which suggests that the sidewalls may play a weaker
role in pattern selection for PMC than for RBC.

A simple solution to (2.5), (2.6), and (2.7) is

v =0, (2.9)

Km
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AT

T= TQ — ?2, (210)
o

P =Py + pog (z—l—ﬁzz), (2.11)

where P, is pressure at z = 0. This solution corresponds to pure heat conduction
through the layer, with the fluid stationary, and is called the conduction solution. We
will non-dimensionalize (2.5), (2.6), and (2.7) using this solution and H, (¢ H?)/x,
kn/H, and AT/Ra as the scale for length, time, velocity, and temperature respectively.
We also introduce the dimensionless convective temperature field, 0:

Ra (1, — a2y, (2.12)

0=t

The non-dimensional equations become,

A Ou .
% +u- (V0 — Raz) = V?0 (2.14)
Veu=0, (2.15)

where

Ra = ayHgAT/vk,, (2.16)
Pr=v/x,, (2.17)
Da =vy/H>, (2.18)
A =aDa/o, (2.19)
o = (pS)m/(pcp)s- (2.20)

P has also been modified to absorb any terms which can be written as gradients. Our
choice of temperature scale is different from some scalings in the PMC literature, and
is chosen, for comparison, to correspond to conventional usage in the RBC literature.

When the Rayleigh number Ra is below a critical value, Ra,, the fluid is stationary,
but when Ra > Ra. it begins to move. The Prandtl number Pr and 4 determine
the relative importance of the acceleration term, and Da is the Darcy number. Da is
typically a small number (in our experiment Da = 2 x 10~ based on (2.2)) and the
acceleration term is often neglected. The time scale

7, = (6 H?) /K, (2.21)

or vertical thermal diffusion time, is a measure of the relevant time for thermal
changes to propagate from the bottom to the top of the cell containing the porous
medium. The horizontal diffusion time is 7, = I" >z,, where I is the aspect ratio. I" is
defined as L/H, where L is a typical lateral dimension of the cell. While I' does not
play a role in the theory discussed below, which considers only horizontally infinite
systems, it is important in physical experiments. For instance, in RBC the lateral
boundaries are known to play a fundamentally important role in pattern selection,
even for relatively large I'. For PMC, there is relatively little information on the
effects of the lateral boundaries on pattern selection, and the present study takes a
first step in addressing this issue.
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2.2. Linear stability

Lapwood (1948) applied stability analysis to (2.13) to (2.15), and found that the
conduction state loses linear stability to a disturbance of wavenumber, g, = © = 27/,
at a critical temperature corresponding to Ra. = 4n”. The value for Ra,. was verified by
several experiments (Combarnous 1975; Close, Symons & White 1985, for example).
The bifurcation parameter for convection is then the reduced Rayleigh number,
Ra — Ra,
=—— 222
€ Ra. (2.22)
While linear analysis can predict the wavelength of the rolls at onset, it has limitations.
For instance, it cannot predict nonlinear three-dimensional patterns.

2.3. Limits on the Darcy number

We consider next the constraints involving the Darcy number, relaxation times, and
the extent to which the Boussinesq approximation is satisfied. In an ideal experiment,
Da should be infinitesimally small, non-Boussinesq effects should be negligible, and
relaxation times should be short. These three conditions are mutually conflicting,
however. If we want to restrict fluid property variation so that the Boussinesq
approximation is valid, we must impose a limit on AT. A reasonable choice for the
fluid used in these experiments might be a maximum of AT = 10 K at the onset
of convection. For fixed AT, and Ra ~ Ra,, the definition of the porous Rayleigh
number (equation (2.16)) and the the Ergun correlation for permeability

d2¢3

e (2.23)

Y
imply that the layer height, H, and the bead diameter of a packed spherical bead
bed, d, are restrained by the curve

6 x 10%kv (1 — ¢)?

2
H =
d g AT 3

(2.24)

For matrices which are not constructed from sphere packings, we still expect this
constraint to apply semiquantitatively, with d representing a typical pore size. For
AT = 10 K, for a typical porosity for beds of packed spheres, ¢ = 0.4, and for fluid
properties corresponding to water at 20°C, equation (2.24) gives the solid curve in
figure 1. AT smaller than 10 K are to the right of this curve. We are also restrained
to the left of the d = H line (dashed line in figure 1): i.e. to have a porous medium,
the pore scale can be no larger than the height. A spatially homogeneous medium,
should satisfy H/d > 1 however, or alternatively, Da < 1. If we choose Da = 2 x 107>
as an upper limit, a relatively large Darcy number, then the condition

s\ —1/2
H=d (150])51(1—(1))) (2.25)
P’
yields the dotted line in figure 1. We must keep to the left of this line. The third
experimental condition, that of tractable relaxation times, imposes the final contraint.
Except near the point of convective onset where the relaxation times diverge, the
characteristic time for vertical thermal diffusion across the layer is T, = H?/x,,. This
leads to a height restriction: if the layer is too tall, relaxation times become so
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FIGURE 1. Acceptable experimental pore sizes, d, and layer heights, H.

long that meaningful experiments under steady conditions become impossible. A
maximum tolerable relaxation time sets a maximum height H :

H = (x1,)’. (2.26)

Given these contraints, the area of possible experimental parameters is quite small,
1.e. for random sphere packings the small triangular region in figure 1 indicated by
the arrow. The important point is that H/d cannot, in general, be chosen so large
that the medium is effectively homogeneous on the scale of 1 = 2x/q.

For example, in the case of water at 40 °C, 3.175 mm plastic beads with H = 1 cm,
AT, = 10 K. Decreasing the bead diameter to 1 mm increases AT, to greater than
100 K. However, the alternative, making H larger is equally problematic, since 7, oc H*
cannot be too large or only transients will be observed. For the example above with
H =1 cm, 1, = 16 min and the horizontal diffusion time, 7, = I'’1,, is 26 hours
for I' = 10. An increase of H by a factor of 3 at fixed bead diameter and I' in
order to obtain a comparable reduction in 6/H would result in relaxation times
of 7, = 27 hours and 7, = 3.6 months, which are clearly unacceptable. To obtain
acceptable relaxation times only d/H < 1 can be realized.

2.4. Comparison of PMC and RBC near onset

Although PMC and RBC are qualitatively similar in a number of respects, there are
also important differences. Here, we contrast these two systems.

2.4.1. Similarities between PMC and RBC

Above, but near the threshold of, a nonlinear instability it is possible to derive
amplitude equations, which describe the large-scale envelope of a basic roll-like state
(Newell & Whitehead 1969; Segel 1969; Newell, Passot & Lega 1993). In this regime,
the bifurcation parameter, e, is small and provides the basis for a multiple-scales
perturbation method leading to a small number of amplitude equations describing
the universal behaviour of large classes of systems. PMC, viewed as a homogeneous
system, and RBC belong to the class I, Cross & Hohenberg 1993 systems as defined by
linear stability analysis. Class I, or stationary periodic, includes any nonlinear system
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which loses stability of a uniform state to a time-independent non-zero-wavelength
pattern. For a base state of straight parallel rolls, the form of the amplitude equation
for all isotropic systems with a type I instability is the same:

0A ,[o i\ o7 .
w0, =eA+ & {ax <2qc> 6y2} A — golAI"A. (2.27)
Here, 19, &, and gy are the scales for time, space, and amplitude, respectively; g, is
the wavenumber at onset, defined above, and A(x, y,t) is a complex amplitude which
depends on space and time. Near onset, all the variation among different members
of this class comes through the parameters 1o, &y, ¢., and go. In the case of PMC
and RBC the amplitude and the basic state defined by the wavenumber determine
the velocity and the temperature field as

U(x,y,2,1) = Uo(2)[A(x, . 1) exp (iqx) + A"(x, y, 1) exp (—ig.x)] + O(e),  (2.28)

where U can be a component of the velocity in any direction or the temperature,
and Uy is determined from linear analysis. For concreteness we have assumed that
the base state is parallel rolls in the X-direction. For PMC, 1y and &, can be derived
from linear stability analysis (Joseph 1976; Shattuck 1995):

1+ 2n2A/Pr  1+19.739 4/Pr

= (2.29)

o o2 19.739

and
1
&= — =0.3183. (2.30)
i

Typically, we expect that A/Pr is so small that it can be ignored, in which case,
79 = (2n?)~!. The parameter g, determines the scale of A, as discussed in the context
of the Nusselt number in §2.7.

For RBC, the time scale and length scale in the RBC amplitude equations are

140.5117Pr!
and
& = 0.3847. (2.32)

The scales 79 and &, have the same qualitative form for both RBC and PMC. Since
A is likely to be very small, the coefficients for PMC are more like those for RBC
when Pr is large. To the extent that the amplitude equation applies, we would expect
qualitatively similar behaviour for both PMC and RBC near onset.

2.4.2. Differences between PMC and RBC

One of the key differences between PMC and RBC lies in the momentum equation
(see (2.13)), which for RBC in dimensionless form is

% <gl; —I—u-Vu) =—VP —V>u+ 0z, (2.33)
Unlike the porous case, this equation is nonlinear and also of higher order. By contrast,
the forms of the heat equations and continuity equations for the two systems are the
same. The Rayleigh numbers for PMC and RBC are related by Ra™ = RaDa .
Also different between PMC and RBC is the appropriate set of boundary condi-
tions. For PMC, the accepted boundary condition on the velocity, assuming (2.13), is
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one of no flux, whereas the corresponding conditions for RBC in the case of physical
experiments are no flux and no slip. This difference in boundary conditions also
reflects the difference in the order of the respective momentum equations.
The last important difference between these two convective systems concerns the
vertical vorticity. From the vertical component of the curl of (2.13) we obtain
0&, Pr

where the vertical vorticity, £, = (V x u)-Z. The solution to (2.34) for an initial value,
507 iS

P
&= &oexp (—rz>. (2.35)
A
Thus, the vertical vorticity decays with a non-dimensional time constant,
A
= —. 2.36
TC Pr ( )
Using the time scale defined above we see that the dimensional time constant is
AcH?
=227 Y _45%10 s, (2.37)
K, Pr \

Assuming that a is of order one, the vorticity decays on millisecond time scales. From
(2.33) it is clear that for RBC, the equation for the vertical vorticity is a complicated
nonlinear equation. There is some evidence (Siggia & Zippelius 1981; Morris et al.
1993; Xi et al. 1993) that vertical vorticity is responsible for complicated behaviour
such as spiral chaos in moderate Prandtl number RBC (Greenside, Cross & Coughran
1988; Greenside 1995, personal communication). If vertical vorticity is essential for
spiral chaos or other complicated behaviour, then such behaviour should be absent
in PMC. Thus, we would expect that PMC will yield steady roll-like patterns within
the predicted linear stability region.

2.5. Symmetry
Equations (2.13) to (2.15) are invariant under the following transformation:

zZ —> —Z

u, —> —Uu,

0 — —0.

This symmetry is important in determining the pattern near onset. In particular, the
pattern should consist of rolls of equal width, and the amplitude A should have the
symmetry A — —A. In §2.4.1, we described the amplitude equations for the base state
of straight parallel rolls. Amplitude equations can also be derived for a base state
consisting of the superposition of multiple straight rolls Newell & Whitehead 1969.
Of particular interest is the case where three roll directions co-exist at 60° angles to
each other. In this state, the base pattern is hexagonal. When the symmetry A — —A
is present, the roll state is stable. However, if the symmetry is broken, then a quadratic
term appears in the amplitude equations for the hexagonal state, which can be stable
(Busse 1967; Bodenschatz et al. 1991). For RBC, Busse (1967) has shown theoretically,
and Bodenschatz et al. (1991) have shown experimentally that hexagons are typically
stable in only a small range near Ra., depending on a parameter P which quantifies
departures form the Oberbeck—Boussinesq approximation. Comparable quantitative
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theories do not exist for PMC, at least to our knowledge. However, we expect that
qualitatively similar behaviour should occur for the PMC case.

The symmetry in (2.13) to (2.15) depends on several assumptions. First, the
boundary conditions on u and 0 must be symmetric in the z-direction. Second, the
Boussinesq approximation must hold: i.e. the fluid parameters, with the exception of
the density, must have negligible dependence on the temperature. Third, for porous
media, there is the additional condition that the pore structure not depend on the
vertical direction.

2.6. Nonlinear analysis and convection patterns above onset

Weakly nonlinear analysis predicts two-dimensional roll states near onset for systems
with vertical mid-plane symmetry (Busse 1985; Newell & Whitehead 1969; Newell
et al. 1993). But, in most PMC experiments, when the pattern was determined, it
was found to be hexagonal or polygonal (Bories & Thirriot 1969; Lister 1990). An
exception is Howle et al. (1993a,b, 1997), who have obtained straight parallel rolls
in some cases, and polygonal patterns in other media, depending on the structure of
the medium. Bories & Thirriot (1969) and Nield & Bejan (1992) attribute polygonal
patterns to broken symmetry in the boundary conditions. Recently, however, Zim-
mermann, Sesselberg & Petruccione (1993) have provided an alternative explanation
which is consistent with the present work and that of Howle et al. They have shown
that localized patterns can result if Ra varies randomly in the horizontal plane of the
convection layer, a situation which can occur easily for PMC.

Further stability analysis has been done to determine secondary instabilities (Straus
1974; Busse & Joseph 1972) of two-dimensional rolls to three-dimensional distur-
bances. Straus (1974) predicts that two-dimensional rolls lose stability to a cross-roll
state at e = 5. However, we are unaware of a direct test of these calculations.

2.7. Heat transport

The Nusselt number, Nu, is a non-dimensional measure of heat transport of the
medium. This quantity is easily measured and provides several important checks on
theory. Nu is the ratio of the effective thermal conductivity, k.ss, of the medium to
the true thermal conductivity of the medium below onset, k,,:

Nu = k]sz. (2.38)

Nu = 1 below the onset of convection, and typically increases uniformly with in-
creasing € above the onset of convection, at least until there is a significant change
in the convective pattern. In the ideal case, there is a discontinuity in the slope of
Nu at onset which provides an easy way to determine AT,, the critical temperature
difference for the onset of convection. The Nusselt number is also simply related
to the spatial average of the product of the vertical velocity and the temperature
perturbation, 6. Nu(e) provides an important link with theory (Busse & Joseph 1972;
Gupta & Joseph 1973; Palm, Weber & Kvernvold 1972), since the parameter g, for
homogeneous isotropic PMC is predicted to be such that for small positive e,

Nu =1+ 2e. (2.39)



Convection and flow in porous media. Part 1 225

3. Techniques and apparatus
3.1. Velocity measurements with MRI

MRI is a non-invasive technique based on nuclear magnetic resonance (NMR),
which measures relaxation-weighted proton density and can also yield fluid velocity
and temperature. There are several techniques for measuring flow with MRI: time
of flight (Singer 1980), phase contrast (Odonnell 1985; Dumoulin 1986), and phase
encoding. We use phase encoding exclusively, which provides information about
velocity distribution, temperature, and density. The theory which we present here was
developed by Moran (1982); the first experimental images were produced by Redpath
et al. (1984). In addition, several recent experiments have exploited MRI to obtain
information on pressure-driven flows (Georgiadis et al. 1991; Givler & Altobelli 1994;
Kutsovsky et al. 1996; Lebon et al. 1996).

We have used an Oxford 2 T magnet, with GE 18 Gem™!, shielded, 15.2 cm
diameter bore gradient coils, controlled by a GE Omega console. An 85.5 MHz
tunable radio frequency coil was produced using etched copper-clad mylar.

Although a full treatment of NMR Slichter 1978 or MRI Callaghan 1991 requires
quantum mechanics, a semi-classical approach suffices to understand the basics of
MRI. The nucleus of an atom may be thought of classically as a spinning charge
distribution with a magnetic moment vector, m, and an angular momentum vector,
L. The Bloch equation describes the dynamics of m for a nucleus in an externally
applied magnetic field, H (Bloch 1946):

dm

T m Xy, H. (3.1)

Here, y, is the gyromagnetic ratio for the given nucleus. Equation (3.1) is the same

classically or quantum mechanically, although y, is different for the two cases, and m

is the expected value of the magnetic moment operator in the full quantum treatment.
According to (3.1), for a magnetic field, H, with a fixed direction, m precesses about

H at an instantaneous rotation rate, w, given by the Larmor equation:

© = 7, |H|. (3.2)

If H = Hyz, then w, = y,H, where w, is the Larmor frequency. In the present
experiments, Hy = 2 T. For hydrogen atoms in water molecules, the Larmor frequency
is in the radio frequency (r.f.) range: w; = 85.5 MHz. Because the spins precess at
wi, 1t 1s often convenient to use a frame which also rotates at wj.

In the presence of a second time-varying magnetic field, H; = H;(cos(wpt)x +
sin(wrt)y), m precesses about Hy. In a frame rotating at wr(the ‘rotating frame’), this
field transforms to H;x. Over a short time, 7, m rotates by an angle, « = y, H;t, about
the direction of H; (X in this case) in the rotating frame. The application of such a
field is called an a-pulse in the x-direction. This process is a resonance phenomenon,
so the r.f. field must be at the Larmor frequency to change the angle.

For a large collection of spins in a localized region of space, dV, we define the
magnetization or density of dipole moments, M, and the total magnetization,

Mtotal oC /MdV
In thermal equilibrium, there are more nuclear spins aligned with the field (lower

energy) than against (higher energy). The population ratio for the two orientations is
given by the ratio of Boltzmann factors, and in equilibrium there is no preference for
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either direction perpendicular to the field. These two facts imply that in equilibrium
M = Mz
The phenomenological Bloch equations (1946) describe relaxation phenomena:
6M(l‘, t) (MZ(V9 t) - (MO("a t))/z\ MX("? t)g—i‘My(l', t)./y\
ot T T
Here, T1 and T, are the spin-lattice and spin-spin relaxation constants, respectively.
At equilibrium,

= M(r,t) Xy, H(r,t)— . (3.3)

oM (r,t) —o,
ot
and Mr,t = Mz as required above. In the absence of relaxation, the Bloch equations,
(3.1) apply (i.e. Ty = T, — o0). Physically, 1/T] is the rate at which the spins relax
back to equilibrium, and 1/7; is the rate at which spins lose coherence in the plane
transverse to the static field (i.e. the x, y plane). 77 is necessarily greater than or equal
to T2.

In a time short compared to 7,, the magnetization vector may be rotated to any
angle, o, using an «-pulse. In particular, if a n/2-pulse is applied in the x-direction
to an equilibrium spin system, then M = My in the rotating frame, or in the lab
frame M = M(cos(wrt)X + sin(wt)y). MRI experiments measure the signal from
this rotating vector with an r.f. antenna or coil which can both receive and transmit
transverse signals. In the discussion below, we will write the transverse magnetization,
M 7, in complex notation: M7 =M = M, +1iM,, where i = \/j

Next we examine the signal received from a small volume element (voxel) at
position, r, and time, ¢, after a %n-pulse. We assume that this process occurs for a
time short compared to 7> and that the magnetic field consists of a uniform part plus
a gradient term:

(3.4)

H(r,t)=(Hy+ Gt r)z+---. (3.5)
The signal is proportional to
M(r,t) = M(ro, to) exp (1P(r, 1)), (3.6)

where
M (ro, o) =|M(r,1)]
cannot change in time since we are neglecting 75. Also,
®(r,t) = arg(M(r, 1)),

and rq is the position of the voxel at the end of an excitation, which occurred at time
to. From (3.2),

t t

&(r,t) = / o(r,s)ds = yg/ (Ho+ G(s)-r)ds. (3.7)
to to

Combining (3.6) and (3.7) with the assumption, for the moment, that the voxels do

not move, and integrating over all space, we obtain the total signal, S, from all voxels:

ﬂﬂ=Awuﬁ%%kmﬁh»/MMw@ﬂmMMW@$m (3.8)

all space

Here, Ay is a proportionality constant, @y = wty, and

kmz%/cm®. (3.9)

to
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FIGURE 2. MRI volumetric rendering of the interstitial space (filled with water) in a packed bed.
The section consists of 3.204 4+ 0.029 mm diameter mono-disperse spherical acrylic beads poured
into a 3.175 cm inner diameter tube. The intensity of the grey scale corresponds to the density of
water at that point. This is a small section from a 256 x 256 x 256 isotropic array. The spatial
resolution is 0.140 mm.

The time dependence, exp (iwyt), can be removed by demodulation leaving the signal
in (3.8) a function of k(t). In this context, S(k) is the Fourier transform of .#(r, to).
By carefully selecting G/(t), the function, S(k) can be measured for all k on a grid. A
fast Fourier transform yields .#(r, ty), which is proportional to the density of spins,
p(ro, to).

Spatial encoding is the process of measuring the density of spins throughout space
using magnetic field gradients. The largest value of the corresponding component
of k on the grid determines the spatial resolution in a particular direction. With
the gradients we have available, we can achieve resolutions of 5 pm. Typically,
however, we use a resolution of 0.40 mm in order acquire images in a time which
is short compared to 7. Since our media have a scale of 3 mm, this resolution is
sufficient to obtain information on a scale comparable to the interstitial spacing of
the beads.

In the next three figures, we present information on the distribution of pores in
packings of plastic spheres. In figure 2, we show a three-dimensional reconstruction
of a section of a porous medium consisting of spherical beads, of diameter 3.204 +
0.029 mm which were also used in the convection experiments. These beads were
placed without regard to spatial order in a plastic tube of diameter 3.175 cm between
two perforated plugs 10 cm apart, and the resulting pore space was saturated with
water. The image shows the relative density of the water with a spatial resolution
of 0.140 mm using volumetric rendering. The beads do not produce an NMR
signal.

The individual spheres in figure 2 exhibit a great deal of packing order near the
wall of the cylinder, as expected. We further demonstrate this effect in figure 3,
which shows the results of an azimuthal and lengthwise integration of the den-
sity of water in the cylinder. The resulting radial density of water shows spatial
oscillations at a period corresponding to dense triangular packing of the spheres,
i.e. the packing is not truly random but contains ordered domains. More insight
into the ordering comes from figure 4 which shows in greyscale the radial density
corresponding to a projection of the fluid-occupied volume onto a plane. Ordering
occurs not only near the walls from the effect of gravitational packing, but, in an
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FIGURE 3. Porosity averaged azimuthally and over the z-direction as a function of radius. A thick
slice, which is 35 mm or 11 bead diameters thick was taken from a 256 x 256 x 256 isotropic density
acquisition shown in figure 2. The tube diameter is 3.175 mm.

FIGURE 4. Projection of the fluid density from the previous image onto a plane, encoded in grey
scale. The ordering of the spheres near the sidewall, and the propagation of the order into the
interior of the cylinder is apparent.

average sense, everywhere throughout the cylinder. This effect is virtually impossi-
ble to avoid for mono-disperse spheres. We will return to this issue below when
we consider results for PMC in media which consist of nominally random sphere
packings.

Velocity encoding for a moving fluid is similar to spatial encoding, except that now
the Lagrangian position of a spin, r, is a function of t. Expanding r(¢) in a Taylor
series we obtain

(1) = ro +vot 4+, (3.10)

where vy is the velocity at the end of excitation. Combining (3.10) with (3.5) to (3.7),
and integrating over all space and all velocities, neglecting acceleration and higher
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terms from (3.10), we obtain the signal from all spins,

S(k,q) = Ao exp (—io) exp (i) / / M(ro, 00, t0) exp (k1)  Fo + (1) v0)) dro v,

all space
all velocities

(3.11)
Here

q(t) = yg/ G(s)sds. (3.12)

to
Since k and ¢ can be varied independently, equation (3.11) is sufficient to obtain
M (rg, vg, ty), which is proportional to the density, p(ro, vo, to).

Because p(rg, v, to) is a six-dimensional function, and it takes time and computer
memory to obtain and store each point, it is not practical at this time to measure
this whole function. We employ two techniques to limit the sample to a manageable
size. The first technique involves selective excitation, in which experimentally applied
field gradients, in conjunction with r.f. pulses limit the spatial extent of the excitation
to a slice of a thickness that is controlled by the strength of the gradient. That is, if
the gradient is high, then only a thin slice will be at the correct frequency for the r.f.
excitation. The second technique consists of averaging over one of the dimensions.
This works well for the velocity as long as p(vy,v,) does not vary significantly over a
volume element dxdydz (voxel). Using these procedures and a slice thickness Az we
typically measure the three-dimensional distribution

z4+Az/2
o(x,y,v;) = // p(X,y,2,0y,0y,0;) dzdv, dv,. (3.13)

—Az/2

We obtain the distribution of velocities, and the porosity from p(x, y,v,). The average
value of v.(x,y) is then [ p(x,y,v.)v, dv,. As with spatial encoding, the finest velocity
resolution of 0.02 mms~!is in practice set by the strength of the gradients.

We also can measure the local temperature with MRI, since 7 is a function
of temperature. In the above analysis we have ignored this temperature-dependent
relaxation for convenience. A full analysis reveals the temperature dependence, and
allows the possibility of exploiting this dependence to obtain local temperatures.

Although the primary goal of the present experiments is to characterize the flows
in PMC, we have carried out two other simpler experiments in order to test MRI
velocity encoding. The first of these was simple Poiseuille flow of water through a
cylinder, i.e. without any porous media present. The second was the porous analogue
of Poiseuille flow through a cylinder, except now the cylinder was filled with a porous
medium consisting of plastic spheres.

In the first experiment, we measured the velocity in a long open pipe of circular
cross-section. We compare the results with the theoretical profile in figure 5. Because
we measured the volumetric flow rate to an accuracy of +1%, there are no fitted
parameters in the comparison of theory to measurement. The agreement between
theory and experiment is excellent.

In figure 6 we show the parallel results for flow through a porous-medium-filled
cylinder (Georgiadis et al. 1991). These images are obtained by averaging over the
2 mm slice thickness according to (3.13), where in this case, the z-direction corresponds
to the axial direction. An interesting feature of these experiments is that the overall
distribution of velocities is exponential, a result which has been obtained theoretically
by Martys, Torquato & Benz (1994).
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FiGURE 5. Comparison of the azimuthally averaged velocity along a 3.175 cm pipe to the theoretical
parabolic prediction. The velocity is averaged over a 2 mm thick slice and over the azimuthal angle.
The spatial resolution is 140 pm, and the velocity resolution is 0.6 mms~!. The theoretical velocity
profile, shown as a dotted line, is based on the measured flow rate and the geometry of the tube.
There are no fitted parameters.
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FIGURE 6. (a) Azimuthally averaged fluid density (dashed line) and velocity (solid line) within a
2 mm slice for flow in a pipe filled with beads. (b) The distribution of longitudinal velocities in this
experiment, without regard to position, is an exponential function of v,.

3.2. Experimental convection apparatus

The primary thrust of these experiments concerns PMC. To this end, we have
constructed a convection cell, sketched in figure 7, which closely approximates the
theoretical ideals of uniform temperatures and rigid boundaries at the top and bottom.
The cell consists of horizontal parallel isothermal planes, constructed from 1 mm thick
aluminium nitride (AIN) plates, separated a distance H by a machined Delrin spacer.
The sealed water-saturated sample of porous medium, confined by the AIN plates
and spacer, resides in an outer Delrin container with a large number of flow ports.
These ports provide cooling water to the top and heating water to the bottom of the
convection layer.

In a conventional RBC cell, at least one of the horizontal bounding plates would
be copper. But, because of the r.f. and rapidly changing magnetic fields produced
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FIGURE 7. Schematic of convection cell. Hot water flows in the bottom section and cold water flows
in the top section. The outer circle represents the bore of the magnet, which is 15.24 cm in diameter.
Letters A-D indicate different parts of water distributors and outer casing. E is the spacer.

during MRI, no metal could be used in the construction of the convection cell. In
place of copper, we used AIN, a ceramic, with both high electrical resistivity and
high thermal conductivity, 1.33 Wem™ K~!. AIN has 1/3 the thermal conductivity
of copper, 222 times the thermal conductivity of water, and 3.3 times the thermal
conductivity of sapphire, which is often used in high-precision convection experiments
with shadowgraph visualization. The high conductivity ensured that the plates were
isothermal and that horizontal temperature gradients were minimized.

The two AIN plates were held at constant temperatures by two separate temperature-
controlled water reservoirs that provided circulating water to the ports in the outer
Delrin container. The baths were controlled by a laboratory computer using propor-
tional and integral feedback to a stability of 5 mK. Thermistors at the inlets and
outlets to the Delrin outer container determined the temperatures of the AIN plates
to 0.3 mK. These thermistors were measured using a scanning digital multimeter
connected by an IEEE interface to the laboratory computer. There was no detectable
difference in the inlet and outlet temperatures of either of the two circulating bath
streams. This indicates that the temperatures measured outside the cell were good
representations of the actual temperatures of the top and bottom plates.

During the course of the experiments, we used three different Delrin spacers, each
with a different planform (see table 1). In each case, the thickness, H, varied by
less than 25 um around the spacer. The careful machining, along with the use of a
levelling bubble ensured that the top and bottom plates were horizontal and parallel.
To construct the solid matrix of the porous medium, we used 3.204 + 0.029 mm
mono-disperse acrylic spheres. We used distilled, deionized water to fill the cell.
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Planform Height (mm) Width (mm) Length (mm) I

Circular 9.52 radius =47.60 na 5.00
Rectangular 10.95 51.70 87.20 797
Hexagonal 10.69 96.80 (corner to corner) na 9.05

TaBLE 1. Physical dimensions of various spacers.

FIGURE 8. (a) Density MRI of a 1 mm horizontal slice of the disorder medium. The slice is taken
at approximately mid-plane. (b) Density MRI of a 8§ mm vertical slice of the disordered medium
and Delrin cell. The cooling/heating water also appears in this image.

To obtain a nominally disordered packing, we poured the spheres into the circular
cell and sealed it. Figure 8(a), a density image, reveals that the disordered packing is
far from random and contains several ordered regions meeting at grain boundaries
as well as other defects. Figure 8(b) shows that the cell is packed 3 bead-layers high.
To obtain the ordered packing in the rectangular and hexagonal cells, we carefully
packed the beads into a 4-layer triangular ABCA lattice (Ashcroft & Mermin 1976).

We also measured the heat transport across the convective layer. In more conven-
tional experiments, this is typically an easy measurement to make through the use of
resistive heating. However, we found that the presence of the heater, a conductor,
interfered with the r.f. field needed for MRI, and we were obliged to use a different
technique. We added two extra layers to the bottom AIN plate. With the extra layers
in place, the bottom plate consisted of a thin sheet of lexan sandwiched between two
highly conducting AIN plates, as in figure 9. Since there were only vertical boundaries
between the isothermal plates, the heat flux g was constant in each region. The total
heat current through the sandwich was Q, = A,q,, where 4, was the area of the
sandwich perpendicular to the direction of heat flow. Likewise, the total heat current
through the Delrin spacer was Q, = Apqp, where Ap was the area of the spacer, and
the total heat current through the medium was Q,, = 4,,q,,, where A,, was the area
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FIGURE 9. Cross-section of experimental cell for MRI and Nu measurements, showing the Delrin
spacer, and Nu measurement sandwich. Ty, T», and T3 are measured temperatures. kp, ks, and k,,
are the conductivity of the Delrin spacer, the sandwich, and the medium, respectively.

of the medium. By conservation of energy, Q, = Q) + Q,,. Solving for k,,, we obtain

_ G(Th = T))/(Th = T3) — Apkp
Ap '
Here, C; = AsksH/h and h is the height of the sandwich. The temperatures T; are

defined in figure 9. We determined C; using the following rearrangement of (3.14)
and the known conductivity of the medium below onset using (table 2):

K (3.14)

T, — T
Cs = (Amkm +ADkD) <T1_T2> . (315)
0

The 0 subscript refers to measurements below onset. Combining (3.14), (3.15), and

(2.38) we obtain
Tl—T2)<T1—T3>
Nu=(144 — A, 3.16
a+an (7=7) (7). (3.16)

where A = (Apkp)/(Amky). For the hexagonal cell, the relation k,, = ¢k, + (1 — @)k,
leads to the simple result: 4 = 1.0. Here, k,, is the thermal conductivity of water, k, is
the conductivity of the plastic beads, and ¢ is the porosity of the medium. In general,
the conductivity of the medium must be known to use (3.16) to calculate Nu.

For the experiments using disordered media, the Nu measurement sandwich was
not in place, and our determination of AT, was no better than 20%. For experiments
with the rectangular cell, we determined AT, from images at 0.5 K increments, which
gave a relative accuracy of +£2.5% in AT.. For the experiments with the hexagonal
cell, we used both images and Nu to determine AT..

The determination of Ra, and Ra. in particular, with absolute accuracy is com-
plicated by the fact that the permeability is difficult to measure. By contrast, the
remaining parameters contained in Ra are fairly well known, particularly, AT.. How-
ever, € only depends on AT and AT, to the extent that all other parameters in Ra are
constant. We will use € exclusively, where it is understood that € = (AT — AT,)/AT..

Information on y is also useful. We made two estimates of this quantity. First
we used (2.2). We can estimate the permeability from (2.2), but the accuracy of the
estimate is unlikely to be very high. Second, we calculated y from the definition of
Ra. = 4n?, the measured AT, and the medium and the material properties. Table 2
presents the results of these two estimates, which differ by a factor of 2.75.

4. Results
4.1. Introduction

In this section, we present results for three different planforms: circular, rectangular,
and hexagonal. This sequence follows a natural order from least to most packing
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Parameter Water at 40 °C Beads (plastic) Medium

Thermal expansion « ( K1) 3.8530 x 10~* 6.8 x 1073 na
Thermal conductivity k (Wem™' K~!)  6.27 x 1073 1.9x 1073 3.0x1073
Density p (gem™) 0.9922158 1.19 1.14
Specific heat ¢ (Jg~' K1) 4.1786 1.470 2.173
Kinematic viscosity v (cm?s™!) 6.580 x 1073 na na
Permeability y ( cm?):

random, ¢ = 0.31 na na 4 %1073

close-pack, ¢ = 0.26 na na 2 x 1073

close-pack, based on AT, na na 5.5 %1073

TaBLE 2. Material parameters. (Unless otherwise noted, medium properties are for the close-packed
cell and are calculated based on an average of the separate properties weighted by the porosity.)

order of the spheres in the convection layer. These results consist of data for the
vertical velocity as a function of the horizontal coordinates, as well as Nu data.

Before turning to the details of these results, we consider the effects of averaging the
velocity in the vertical direction. Typically, we obtain results for the vertical velocity
by exciting the spins in a horizontal slice of the cell. We obtain the best signal quality
by choosing this slice to be essentially the entire height of the convection layer. To
justify this process, we obtained images for 2 mm and 8§ mm slices of the convection
cell. The 2 mm slice did not convey any more information than the 8 mm, and the
8 mm slice had better signal-to-noise ratio due to the spatial averaging. In this work
we will display only images with 8 mm slice thickness. In all the images, we make
a small uniform correction of the velocities, such that the net flow rate is zero. This
correction is about 2% of full scale.

4.2. Disordered media

Pattern selection in the disordered medium (aspect ratio I' = radius/H = 5.00) is
dominated by defects in the packing. In figure 10, we show velocity images for the
disordered medium at several values of e. This is the same medium as in figure 8. In
this figure and the following figures, we use greyscale to encode the vertical velocity.
Darker regions correspond to upflows, and lighter regions to downflows.

Figure 10(a) shows the circular cell for AT = 0. In figure 10(b), ¢ = —0.5, and
convection has begun near the wall and at the grain boundaries. The latter are evident
in figure 8(a). Convection occurs first in these places because the porosity, and hence
the permeability, y are locally largest in these regions. As e increases above onset to
1 (figure 10c), convection occurs in the regions of ordered sphere packing. We define
AT, to correspond to the onset of convection within the interior of the cell and away
from defects. The convection along the grain boundaries is stronger than in the bulk
and tends to pin the pattern even with increasing e, as seen as in figure 10(d,e). In
this sequence, the pattern changes little, especially near the defects. By contrast, the
patterns obtained for ordered packings change considerably for the same range of e,
as in figures 12 and 13. To emphasize the pinning effect of the defects, figure 10(f)
shows the pattern after we dropped AT to 0 and returned it to ¢ = 3. The pattern
in (f) is very similar to that in (d) and (e), i.e. the defects tend to produce the same
pattern on cycling through onset. By contrast, the ordered media, figure 13, show
different patterns when they are cycled through onset.

Estimates of the wavenumber for the patterns in this cell range from g = 0.87 to
q = 3n. The lower end of this range corresponds to the interior of the cell where
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FiGure 10. Vertically averaged, vertical velocity for a circular cell with disordered packing.
(a) AT =0.0, e = —1.0. (b) e = —0.5. (¢c) e = 1.0. (d) ¢ = 3.0. (¢) e = 5.0. (f) e = 3.0, but after first
decreasing AT to 0, and then raising it back to e = 3.

there are no defects. The upper end of this range corresponds to the very short rolls
which form near the defects and walls. Due the modest aspect ratio and the presence
of defects, the wavenumber in the cell interior is not sharply defined, although it is
definitely smaller than n. For instance, ¢ = = would correspond to 5 roll pairs across
the diameter, whereas we observe 4 to 4.5 pairs. A surprising observation is that the
regions of upflow are smaller, on average, than the regions of downflow; we observe
a comparable effect in the ordered media. Although not as pronounced as in the
ordered media, the ratio of the size of up-flowing regions to down-flowing regions
decreases as e increases.

The striking effect of the packing defects on the pattern formation is exacerbated
by the small number of layers. One missing bead from an area of close packing can
change ¢ by a third. For the reasons discussed in §2.3, we cannot increase the number
of layers by an amount which would significantly decrease the impact of a defect.

4.3. Ordered media

Because the defects in the disordered medium strongly perturb the system, ordered
media are much more likely to approach the ideal case of a homogeneous medium
envisaged in most theoretical models. Nevertheless, experimental systems with regular
sphere packing must, in general, still have periodic spatial variations which are at
most an order of magnitude smaller than a convective wavelength, and depending on
the packing scheme, there may also be large effective variations in the permeability
at the sidewalls.
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FiGURE 11. Vertically averaged, vertical velocity for a rectangular cell with ordered packing for
various values of e: (a) —0.5, (b) 0.2, (c) 0.4.

In the ordered media, we used packings with hexagonal symmetry. We began our
investigation with a rectangular planform with an aspect ratio in the long direction of
I' =797 (table 1). Consequently, the packing along the short and the long sidewalls
of the container differ. In our packing ¢; > ¢dg > ¢Ppur. Where ¢, ¢y, and ¢
are the porosities near the long wall, the short wall, and the interior, respectively.
Equations (2.2) and (2.16) suggest that the flows will be qualitatively different near
the long and short walls, as well as in the interior of the layer. This expectation is
consistent with our observations.

Figure 11 shows the progression of the patterns for the rectangular cell as e
increases. Convection begins first along the long wall (figure 11a) at ¢ = —0.5. The
wavenumber, ¢q;, in this region is 2.057, which is typical for the defect regions and is
larger than the value © predicted for the bulk porous medium. Convection begins on
the short wall at ¢ = —0.2 and in the bulk, or interior, at ¢ = 0, by definition. The
wavenumbers in these regions are g¢ = 1.357 and g, = 0.77=%, for the short wall
and the bulk, respectively, as seen in figure 11(b, c). The wavenumber for the interior,
Qpuic> Which is the only wavenumber which we can reliably compare to theory, is
measurably smaller than predicted. It is interesting that q; > g5 > qp..-

The fact that well-defined convection rolls without pinning form in the rectangular
planform experiment indicates that, within the context of PMC, uniform packings
are more like the homogeneous media envisaged in models, than disordered packings.
However, a more desirable situation would be one in which the sidewalls were iden-
tical. One possibility would be square packings of spheres. However, such packings
are gravitationally unstable, and tend to collapse into close-packing arrangements.
To achieve uniformity at the walls, with hexagonal sphere packings it is necessary to
have a planform with hexagonal symmetry. The following experiments were carried
out in such a geometry.

Using the I' = 9.05 convection cell with hexagonal planform, we studied states
from € < 0 to € = 7. We document representative states in figures 12 and 13. With
increasing €, we see the following sequence. For ¢ < —0.4, we do not observe any
flow, within our resolution, and the Nusselt curve is flat. At roughly ¢ = —04,
we first discern localized convection rolls near the sidewalls with ¢ ~ 1.1n. These
localized rolls do not contribute measurably to the Nusselt number which remains
flat within our resolution to e = 0.0. We first detect convection in the bulk (i.e. in the
interior) with MRI for € ~ 0.15. There is a sharp increase in Nu above AT,, and this
sharp bifurcation allows us to determine AT, to within 1% by fitting Nu above and
below onset, and by then determining the intersection of these two parts of the heat
transport curve.
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FIGURE 12. Vertically averaged, vertical velocity for hexagonal cell with ordered packing. (a)
e=—02.(b) e=1.0.(c) e=2.0.(d) e =3.0. (¢) e =4.0. (f) e =5.0. (g) € =6.0. (h) e =7.0.

We observe steady convection for 0.15 < e < 5.0. At the upper end of this range,
the pattern, though steady, no longer consists of rolls, but rather is a cellular pattern.
This pattern is a precursor of the time-dependent states for € > 6; in these states the
smaller upflow regions move, apparently randomly, in a larger sea of downflow.

In the steady regime, the sidewalls appear to play only a minor roll in pattern
formation. For instance, figure 13 shows four different patterns formed at € = 1, after
repeated cycling of AT below AT,. Substantially different patterns form in the bulk
on each cycling. Unlike the case of RBC, the nominally slip boundary conditions in
PMC do not force the rolls to be perpendicular at the boundaries. In these images,
rolls are both perpendicular and parallel to the walls. Some patterns have more
symmetry than others, and the rolls may also branch as in figure 13(c).

As discussed in §2.4, we expect that the vertical vorticity should decay rapidly to
zero within the stability region. Hence, the complex, often time-dependent states of
low to moderate Pr in RBC which result from coupling of vertical vorticity to mean
flows, should be absent in PMC. To test this, we brought the system to e = 7, which
is a relatively rapidly changing time-dependent state. From this state, the system
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FiGURE 13. Vertically averaged, vertical velocity for hexagonal cell with ordered packing at e =1,
but AT was dropped to 0 between each image.

was quickly quenched to e within the stability region, ¢ < 5.0. Figure 14 shows a
representative sample of this process. Each image except for the last is separated by
27,. In figure 14(a, b), the system is in the time dependent state at ¢ = 7. Between
figure 14(b) and figure 14(c), we reduced ¢, in 0.37,, to € = 2. Figure 14(c—e) shows
the decay to a steady state, and figure 14(f) shows the pattern 1007, = 1.27;, after
figure 14(c). We carried out similar quenches from € = 7 to e = 0.2, 1, 3, and 4. In
each case, the system approached a steady state in 27,57, and was stable for up to
T, €xcept for minor adjustments in the wall regions. Presumably, the pattern would
have remained stable beyond 7, although we cannot be sure of this expectation.

An interesting issue is the evolution of the wavenumber with varying e. Figure 12
shows the patterns, from which we can determine ¢, over ¢ = 0 to ¢ = 7. At onset,
q. = 0.77, which does not match the theoretical prediction of g, = n. We tentatively
attribute the difference between theory and experiment to competition between the
structure of the medium and the conventional wavelength selection process. In light
of this difference, we present in figure 15 data for ¢ versus reduced wavenumber,
Q0 = (q—4q.)/q,. for various runs. We also include in this figure the theoretical
stability boundaries, Straus (1974), where we have chosen ¢. for the data and the
predictions so that the two curves agree at Q = 0.

Figures 12 and 13 indicate that there is an asymmetry between the horizontal size of
the upflowing and downflowing rolls. Figure 16 shows this effect explicitly in terms of
Au/ 24, the ratio of the wavelength determined from the up- and downflowing regions
for the various runs. This ratio steadily decreases with increasing e. Correspondingly,
the area occupied by upflowing rolls decreases with increasing €. By e = 5, figure 12(f),
the pattern has become cellular, with small regions of faster upflow moving in large
regions of slower downflow. We tentatively ascribe this asymmetry to the relatively
large temperature differences which occur at large e. These large differences imply
a breaking of the up-down symmetry. Similar temperature differences may occur in
RBC experiments. But, in that case, other effects, such as vorticity coupled to mean
flows, which leads to time dependence, may mask the effect which we observe here.
Although a theory exists to describe departures from the Boussinesq approximation
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FIGURe 14. Vertically averaged vertical velocity for hexagonal cell with ordered packing. This
sequence shows the effect of a temperature quench. All images, except for the last, are 27, apart.
(a-b) e = 7. Time-dependent state before quenching AT. (c—e) Decay to steady state at € = 2. (f)
State 1007, after quench.

in RBC near onset, we know of no comparable theory which would address the
current experiments.

As noted previously, the time-dependent states which occur for € > 6.0 are qualita-
tively different from the expected cross-roll state (Straus 1974). Figure 17 shows the
time-dependent motion at € = 7 through a series of images which are separated in
time by 27,. The motion is not obviously periodic, although we do not have enough
data at this time to definitively establish this point.

In two runs we included our Nu measurement device, and the results from these
measurements are given in figure 18. We did not use this device routinely, because
there are some differences in the pattern which formed while using it. For instance, in
figure 13(d) we include an example of the pattern with the device in place, whereas for
the other images in that figure, this device was not in place. With the Nu apparatus,
the roll boundaries are not as smooth, there is more branching, and the upflow region
is thinner at the same e. Although there is clearly some perturbative effect with the Nu
device in place, the important point is that, within our resolution, the bifurcation to
convection is sharp, and measurements of Nu determine AT, precisely. By determining
AT, precisely, we observe that the small rolls next to the walls have only a minimal
effect on the heat transport. For instance, the left-hand arrow in figure 18 indicates
where we first detect convection next to the wall using MRI, and the right-hand arrow
indicates where we can first detect flow in the bulk. The critical temperatures for the
two runs differ by 6%, which is within our experimental resolution, and presumably
is related to differences in the pattern. Specifically, the values are AT, = 8.5 K and
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FIGURE 16. Ratio of upflowing roll width to downflowing roll width versus e.

AT, = 8.0 K. The average slope
S = (dNu/de)._o+ (4.1)

of both curves is 0.73 4+ 0.05, which differs from the theoretical value of 2. By
comparison, other experimenters have found comparable or smaller slopes. For
instance, Elder (1967) found S = 1, and Howle et al. (1997) find a slope between
0.53 and 1.35, depending on the medium. Close et al. (1985) find that the slope is
dependent on the the ratio d/H, where systems having larger values of this ratio had
lower S.
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FIGURE 17. Vertically averaged, vertical velocity for hexagonal cell with ordered packing showing
time-dependent behaviour above 6¢. The images are separated by 27, and are for e = 7.

5. Summary and conclusions

In the present study and the following parallel work by Howle et al., we describe
non-invasive experimental tests of theories for convection in porous media. These
experiments provide information on pattern selection and high-precision heat trans-
port data. In particular, the present experiments provide local information on the
fluid velocity, both for convecting fluids and for pressure-driven flows. Several of the
theoretical predictions are not well satisfied. We identify the modest size of the ratio
d/H as the key reason for the differences between theory and experiment. Specifically,
for typical experiments consisting of bead packings, the assumption of homogeneity,
which requires d/H < 1 is not satisfied. Although there may be alternative ways to
construct porous media which are effectively homogeneous, large classes of porous
systems are subject to three conflicting constraints: the requirement that d/H is small,
the requirements for Boussinesq conditions, and the need for tractable relaxation
times. Given d/H only modestly small, the structure of the medium will play a
role which is not considered in conventional theories. Consequently, the assumption
of homogeneous Darcian flow, which has routinely been used in the past, needs
improvement or replacement for the PMC problem.

The medium structure affects pattern formation in several ways. For nominally
disordered arrangements of spheres, packing defects such as grain boundaries between
locally ordered packing regions, lead to complex cellular convection patterns which
are pinned by the defects. In ordered sphere packings, well-defined convection rolls,
which differ in detail on repeated cyclings through convective onset, occur in the
interior of the container, and small-wavelength rolls occur near the walls. However,
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FIGURE 18. Nu versus e, for two different runs with the hexagonal cell.

the wavelength of the interior convection rolls is consistently too large compared
to theory. We tentatively attribute this observation to wavelength forcing effects
associated with the periodic structure of the packing.

In the present study, we examined five specific predictions based on the assumption
of homogeneous Darcian flow. Four of these — the pattern at onset, the wavenumber
at onset, the stability of patterns in the predicted region of stability, and the type
of patterns produced after secondary instabilities occur — can only be examined in a
system which can be visualized. The fifth prediction, the slope of Nu versus Ra, has
been examined before, but we included it for completeness. Of five predictions based
on continuum theory, we find that two, the qualitative pattern at onset (rolls) and
the size of the stability region (at least near the observed critical wavevector), match
experiment. Specifically, we found stable roll-like states near onset which remained
stable up to € = 5. The states also relaxed rapidly, within 27,—57,, after quenching
from a time-dependent state at e = 7. This is consistent with (although not a direct
proof of) the rapid decay of vertical vorticity. The wavenumber at onset, the secondary
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instabilities, and the Nu versus Ra curve do not agree with theory. We measure the
wavenumber at onset to be 0.77 instead of n. The stable time-independent states
are predicted to lose stability to time-independent cross-roll states. Instead we find
that they lose stability to a time-dependent cellular state, possibly with hexagonal
symmetry. The measured slope of the Nu versus Ra curve, 0.73 4 0.05, differs from
the prediction of 2. We have also observed an interesting asymmetry in the size of
the upflowing and downflowing rolls. The ratio of the width of the upflowing rolls to
that of the downflowing rolls tends to decrease as e is increased. As e is increased
further the upflowing rolls become isolated islands or plumes of upflow in a large
background of downflow. The result is a time-dependent state starting at ¢ ~ 6. A
possible reason for this asymmetry is the variation of the fluid parameters across the
layer height which occurs for large Ra.

The present experiments indicate that new theories of PMC should include infor-
mation on the pore structure. Alternatively, experiments on different media which
are not constructed from sphere packings may provide new and useful information.
In that vein, studies of convection for binary mixtures, where travelling wave states
are expected for homogeneous media, may provide an effective testing ground for
theories of porous flow.

This work was supported by the US DOE, Office of Basic Energy Sciences, Grant
DE-FG05-90R 14141 and (G.A.J.) by NIH grant No. P41 RR05959.
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